Extensions 1→N→G→Q→1 with N=C2 and Q=C423S3

Direct product G=N×Q with N=C2 and Q=C423S3
dρLabelID
C2×C423S396C2xC4^2:3S3192,1037


Non-split extensions G=N.Q with N=C2 and Q=C423S3
extensionφ:Q→Aut NdρLabelID
C2.1(C423S3) = (C2×C42).6S3central extension (φ=1)192C2.1(C4^2:3S3)192,492
C2.2(C423S3) = C427Dic3central extension (φ=1)192C2.2(C4^2:3S3)192,496
C2.3(C423S3) = (C2×C42)⋊3S3central extension (φ=1)96C2.3(C4^2:3S3)192,499
C2.4(C423S3) = (C2×Dic3).9D4central stem extension (φ=1)192C2.4(C4^2:3S3)192,217
C2.5(C423S3) = (C22×C4).30D6central stem extension (φ=1)192C2.5(C4^2:3S3)192,221
C2.6(C423S3) = C6.(C4⋊D4)central stem extension (φ=1)96C2.6(C4^2:3S3)192,234
C2.7(C423S3) = (C22×C4).37D6central stem extension (φ=1)96C2.7(C4^2:3S3)192,235

׿
×
𝔽